منابع مشابه
Countable dense homogeneity and λ - sets
We show that all sufficiently nice λ-sets are countable dense homogeneous (CDH). From this fact we conclude that for every uncountable cardinal κ ≤ b there is a countable dense homogeneous metric space of size κ. Moreover, the existence of a meager in itself countable dense homogeneous metric space of size κ is equivalent to the existence of a λ-set of size κ. On the other hand, it is consisten...
متن کاملSets of extended uniqueness and σ - porosity
We show that there exists a closed non-σ-porous set of extended uniqueness. We also give a new proof of Lyons’ theorem, which shows that the class of H(n)-sets is not large in U0.
متن کاملInscribing Closed Non-σ-lower Porous Sets into Suslin Non-σ-lower Porous Sets
This paper is a continuation of the work done in [9]. We are interested in the following question within the context of σ-ideals of σ-porous type. Let X be a metric space and let be a σ-ideal of subsets of X . Let S⊂ X be a Suslin set with S / ∈ . Does there exist a closed set F ⊂ S which is not in ? The answer is positive provided that X is locally compact and is a σ-ideal of σP-porous sets, w...
متن کاملOn a σ-ideal of compact sets
We recall from [10] a Gδ σ-ideal of compact subsets of 2 ω and prove that it is not Tukey reducible to the ideal I1/n = {H ⊆ ω : ∑ h∈H 1/h <∞}. This result answers a question of S. Solecki and S. Todorčević in the negative.
متن کاملOn Σ-porous Sets in Abstract Spaces
The main aim of this survey paper is to give basic information about properties and applications of σ-porous sets in Banach spaces (and some other infinite-dimensional spaces). This paper can be considered a partial continuation of the author’s 1987 survey on porosity and σ-porosity and therefore only some results, remarks, and references (important for infinite-dimensional spaces) are repeated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 1992
ISSN: 0166-8641
DOI: 10.1016/0166-8641(92)90086-f